Wildland Fire Simulation by the help of Farsite

Global Fire Monitoring Center, Germany/ Forest Protection Institut, Hungary

Daniel Nagy

Application area of fire behaviour modelling

- Pre-attack or fire prevention planing
- Planing of large area forest fire fighting operations
- Planing of prescriped burning operation

The minute by minute movement of a fire will probably never be predictable certainly not from weather conditions forecasted many hours before the fire! (Rothermel 1983)

Fire behaviour models

respectively empirical (or statistical),
semi-empirical (semi-physical or laboratory models) (BEHAVE ,
FARSITE,)
physical (theoretical or analytical).

Forest fire spread models

•Stochastic models consisting to predict the more probable fire behaviour from average conditions and accumulating acknowledges obtained from laboratory and outdoor experimental fires,

•Deterministic models (Semi-empirical and physical) in which the fire behaviour is deduced from the resolution of the physical conservation laws (mass, energy, momentum...) governing the evolution of the system formed by the flame and its environment,

Modelling of the fire shape: •simple ellipse /van Wagner 1969/ •rughly egg (Anderson 1980, Peet) •fan (Byram 1959)

The reliance on an assumed fire shape, in this case an ellipse, is necessary because the spread rate of only the heading portion of a fire is predicted by the present fire spread model (Rothermel 1972). Fire spread in all other directions is inferred from the forward spread rate using the mathematical properties of the ellipse.

Computerized fire models:

•*eight neighboring cells modell* (by Kourtz and O'Regan,1971) The model computed the time for fire to travel between the eight neighboring cells or nodes on a rectangular grid.

•Other cellulars modell

•Stochastic percolation techniques (Beer and Enting 1990; Von Niessen and Blumen 1988)

•Fractal algorithms (Clarke and others 1994) to reflect uncertainty in spread though a regular landscape matrix.

Huygens' principle

В

Implementation of Huygens' principle as a fire growth model

$$X_{t} = \frac{a^{2}\cos\theta(x_{s}\sin\theta + y_{s}\cos\theta) - b^{2}\sin\theta(x_{s}\cos\theta - y_{s}\sin\theta)}{\left(b^{2}(x_{s}\cos\theta + y_{s}\sin\theta)^{2} - a^{2}(x_{s}\sin\theta - y_{s}\cos\theta)^{2}\right)^{1/2}} + c\sin\theta$$
[1]

$$Y_{t} = \frac{-a^{2}\sin\theta(x_{s}\sin\theta + y_{s}\cos\theta) - b^{2}\cos\theta(x_{s}\cos\theta - y_{s}\sin\theta)}{(b^{2}(x_{s}\cos\theta + y_{s}\sin\theta)^{2} - a^{2}(x_{s}\sin\theta - y_{s}\cos\theta)^{2})^{1/2}} + c\cos\theta$$
[2]

Implementation of Huygens' principle as a fire growth model

The information required at each vertex includes

- (1) the orientation of the vertex on the fire front in terms of component differentials (m) xs, ys,
- (2) the direction of maximum fire spread rate q (the resultant wind-slope vector, radians azimuth)
- (3) the shape of an elliptical fire determined from the conditions local to that vertex in terms of dimensions a, b, c (m/min). From these inputs, Richards'(1990) equation computes the orthogonal spread rate differentials (m min -1) *Xt* and *Yt* for a given vertex:

Other equations:

- 1. Transformations for Sloping Terrain
- 2. Vektoring Wind and slope

Farsite

Ine simulator incorporates
existing fire behavior models of surface fire spread, arown fire spread, spotting,
point-source fire acceleration, and fuel moisture.
It demonstrates the linkages between existing fire behavior models and the consequences to spatial patterns of fire growth and behavior.

The surface fire model equations of the FARSITE

$$R = \frac{I_R \xi (1 + \Phi_w + \Phi_s)}{\rho_b \varepsilon Q_{ig}}$$

R =heading fire steady state spread rate (m min –1) IR = reaction intensity (kJ min –1 m –2) ξ =the propagating flux ratio rb = ovendry bulk density, kg m –3 ϵ = effective heating number, dimensionless Qig =heat of pre-ignition, kJ kg –1 Wind and slope coefficients are accounted for by the additive terms *Fw* and *Fs*, respectively. Fuel bed characteristics are specified according to the format of fire behavior fuel models used in BEHAVE (Albini 1976; Anderson 1982; Andrews 1986; Burgan and Rothermel

Ib = *h w R*/60

Fireline intensity *Ib* (Byram 1959) describes the rate of energy release per unit length of the fire front (kW m –1):

h represents the heat yield of the fuel (kJ kg -1, total heat less the energy required for vaporizing moisture), *w* the weight of the fuel per unit area (kg m -2) burned in the flaming front, *R*/60 is fire spread rate converted to units of (m s -1).

$$I_b = \frac{I_R}{60} \frac{12.6R}{\sigma}$$

 σ characteristic surface area to volume ratio of the fuel bed (m –1). The frontal fire characteristics (spread rate, fireline intensity, and so forth) calculated for a steadystate fire are dependent on the current environmental conditions such as fuel characteristics and moisture, windspeed and direc-tion, and topographic slope and aspect. All of these parameters must be available or computable at any point on the landscape at any time.

Crown Fire Model

The crown fire model used in *FARSITE* was developed by Van Wagner (1977, 1993) and is similar to its implementation in the Canadian Forest Fire Behavior Prediction System (Forestry Canada Fire Danger Group 1992) The model assumes that the threshold for transition to crown fire *Io* (kW m–1) is dependent

•on the crown foliar moisture content *M* (percent on dry weight basis: determines crown ignition energy)

and the height to crown base CBH (m) (Van Wagner 1989):

 $Io = (0.010 CBH (460 + 25.9M))^{3/2}$

The "type" of crown fire depends on the threshold for active crown fire spread rate *RAC* (Alexander 1988):

RAC = 3.0/*CBD*

- where *CBD* is the crown bulk density (kg m–3) and 3.0 is the product of an
- empirical constant defining the critical mass flow rate through the crown
- layer for continuous flame (0.05 kg m–2 s–1) and a conversion factor (60 s min–1).
- Van Wagner (1977) identifies three types of crown fire determined by the *lo*
- and RAC:
- 1. Passive Crown Fire (*Ib*> = *Io* but *RCactual*<*RAC*),
- 2. Active Crown Fire (*Ib*> = *Io*, *RCactual*> = *RAC*, *E*<*Eo*)
- 3. Independent Crown Fire (Ib>Io, RCactual> = RAC, E>Eo) where E and Eo represent the actual and critical energy flux,

<u>The spread rate of a passive crown fire is assumed equal to that of the</u> <u>surface fire.</u> The actual active crown fire spread rate at the *ith* vertex $R_{Cactual}$ (m min–1) is determined from the maximum crown fire spread rate (R_{Cmax})

as:

$$\begin{split} R_{Cactual} &= R + CFB \left(R_{Cmax} - R \right) \\ \text{if } R_{Cactual} \text{ meets or exceeds } RAC, \text{ where:} \\ R_{Cmax} &= 3.34 R_{10} E_i \end{split}$$

and 3.34R10 is the active crown fire spread rate (m min–1) determined from a correlation with the forward surface fire spread rate for U.S. fuel model 10 using a 0.4 wind reduction factor (Rothermel 1991). Although intended to represent the average crown fire spread rate (Rothermel 1991), the coefficient

3.34 was used here to determine the maximum crown fire spread rate. Nevertheless, this correlation remains independent of crown structure, and the uncertainties in predicting crown fire spread rates are not likely resolved through simple adjustment of the coefficient

Farsite required Input Data's

FARSITE Project		×
Load Project	dani.FPJ	Attached Vector Files
Save Project	Close Project	Canopy Characteristics
Landscape File (.LCP)	Weather Files (.WTR)	·>
Fuel Files Adjustments (.ADJ)		 > ОК >
Moistures (.FMS)	5	<u> </u>
AUG11.FMS ->	Wind Files (.WND)	→ Help
Conversions (.CNV)		·
Custom Models (.FMD)		Cancel
Coarse Woody (.CWD)	Burn Period (.BPD)	
		<u> </u>

Fire Area Simulator

5114

Systems for Environmental Management

File Name	File Ext.	File Typ e	Required	Optional
Landscape	.LCP	Rast er	Fuel Model, Slope, Aspect, Elevation, Canopy Cover	Crown Bulk Density, Crown Base Height, Stand Height, Duff Loading, and Coarse Woody
Weather	.WT R	Text	At least one file	<i>themestrE</i> can use up to 5 .WTR files in a simulation
Wind	.WN D	Text	At least one file	<i>FARSITE</i> can use up to 5 .WND files in a simulation
Adjustment	.ADJ	Text	Although required, this file can consist of all zeros	Adjustment factors other than zero are optional
Initial Fuel Moisture	.FMS	Text	<i>FARSITE</i> needs moistures at least one day before the beginning of the simulation	none

Eile Norres			Deguined	Ontional
File Name	File	File	Required	Optional
	Ext.	Тур		
		e		
Fuel Model	.CN	Tex	none	yes
Conversion	V	t		
Custom Fuel	.FM	Tex	none	For fuel models other than
Models	D	t		the 13 standard NFFL
IVIUUEIS				
				models
Fire	.AC	Tex	none	yes
Acceleration	L	t		
<u>Air Attack</u>	.AIR	Tex	none	needed to implement the
Resources		t		air attack functions
Coarse	.CW	Tex	none	specifies > 3" fuels for the
Woody	D	t		Coarse Woody GIS theme
Profiles				used by Post Frontal
TTUILLES				Combustion Model.
Dury David	DDD			
Burn Period	.BPD	Tex	none	specifies a daily burn
		t		period by date
Gridded	.AT	Tex	none	uses gridded weather files if
Weather and	M	t		a weather model to provide
Winds				them is available
<u>Ground</u>	.CR	Tex	none	needed to implement the
<u>Attack</u>	W	t		air attack functions
Resources				

Landscape file

Landscape (LCP) File Genera	ition		×
Load File (.LCP)	Clear Files		dani.lcp
Save File (.LCP)	Latitude o	Units and Options DISTANCE	
Elevation ASCII	ash_elev.asc	Meters C Feet	ОК
Slope ASCII	ash_slope.asc	O Degrees C Percent	
Aspect ASCII	ash_aspect.asc	C 1-25 C Degrees	
Fuel Model ASCII	ash_fuel_2	🔲 Custom 🔲 Convert 🔲 Const	Help
Canopy Cover ASCII	ash_canopy.asc	📀 Cat. 0-4 🔿 Percent 🔲 Const	
🔲 StandHeight ASCII	ash_height.asc	Meters 🔽 🗖 Const	
🔲 Crown Base Height	ash_cbh.asc	Meters 🔽 🗖 Const	Cancel
Crown Bulk Density	ash_cbd.asc	kg/m3 🔽 🗖 Const	
Duff Loading ASCII	ash_duff.asc	O T/ac 💿 Mg/ha 🔲 Const	
Coarse Woody ASCII	ash_cwd.asc	Const	
Description			

Surface fire modelling

Required Themes	Unit
Elevation	Meter
Aspect	1-25/degree
Slope	Degree/percent
Fuel Model	NFFL 13/custom, const
Canopy Cover	Cat 0-4/const/ percent

Combustion Zone Combustion Combustion Finished

Crown fire modelling

Optional Themes	Unit
Crown Base Height	Meter, const
Stand Height	Meter, const
Crown Bulk Density	Kg/m ^{3,} const

Post frontal combustion

Duff Loading	T/ha, const	
Course Woody	const	

Cin On dan. 20-Gn do. Ø

Elevation
 Slope
 Aspect
 Fuel Model
 Canopy Cover
 Canopy Height
 Crown Base Height
 Crown Bulk Density

o- co-registered (e.g. have the same reference point, projection, and units)
o- identical resolution (e.g. cell size must be the same for all themes)
o- same extent (the corners of the rectangular spatial region must be the same)

Export and Outputs optoins

CHEVIC GIRL OUCES

Display Units (graphs and tables)	Raster Files	ode nu
File Output Units C English © Metric	 Time of Arrival (hrs) Fireline Intensity (kW/m) Flame Length (m) Rate of Spread (m/min) 	ta ew
Select ASCII File Name	 Heat / Area (kJ/m2) Reaction Intensity (kW/m2) 	
🔲 Visible Steps Only	Crown Fire Activity (cat)	
ARC UNGENERATE Format Optional ASCII Format	Spread Direction (az) X 30 m X Y S0 m Y Y S0 m Y S0 m T	
ARCVIEW Shapefile Name	C Optional Format	
✓ Visible Steps Only	Set Raster Extent to Current Viewport	
 Save Perimeters as Lines Save Perimeters as Polygons Exclude Barriers 	OK Help Cancel OK Help Create Log File(s) for Output Files	

Switch over on the FASHE

Limitation and problems at the use of farsite

•Missing input dates,

- •The needs of digital data gathering under the prevention planing
- •Other fire fighting structure that in use in USA or in Canada
- •Missing funktion in practice for professional moddeling personal (FBAN)

Dziekuje za uwage!

Thanks for your patience!

References:

FARSITE: Fire Area Simulator—Model Development and Evaluation, USDA Forest Service 1998 EUFIRELAB: Behaviour Modelling of Wildland Fires: a State of the Art

Photo: GFMC